Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Mol Ther ; 32(4): 1061-1079, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38382529

ABSTRACT

Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors' exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1-5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.


Subject(s)
Complement Factor H , Kidney Diseases , Humans , Mice , Rats , Animals , Complement Factor H/genetics , Complement C3d/metabolism , Kidney Diseases/etiology , Antibodies , Complement Activation
2.
Nat Commun ; 15(1): 1492, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374032

ABSTRACT

This study investigates correlates of anti-S1 antibody response following COVID-19 vaccination in a U.S. population-based meta-cohort of adults participating in longstanding NIH-funded cohort studies. Anti-S1 antibodies were measured from dried blood spots collected between February 2021-August 2022 using Luminex-based microsphere immunoassays. Of 6245 participants, mean age was 73 years (range, 21-100), 58% were female, and 76% were non-Hispanic White. Nearly 52% of participants received the BNT162b2 vaccine and 48% received the mRNA-1273 vaccine. Lower anti-S1 antibody levels are associated with age of 65 years or older, male sex, higher body mass index, smoking, diabetes, COPD and receipt of BNT16b2 vaccine (vs mRNA-1273). Participants with a prior infection, particularly those with a history of hospitalized illness, have higher anti-S1 antibody levels. These results suggest that adults with certain socio-demographic and clinical characteristics may have less robust antibody responses to COVID-19 vaccination and could be prioritized for more frequent re-vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Adult , Humans , Female , Male , Aged , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Demography , Vaccination
3.
Kidney Med ; 6(1): 100753, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225975

ABSTRACT

A Black woman in her 40s with past medical history significant for obesity treated with Roux-en-Y bypass surgery and a history of Raynaud's phenomenon, presented with acute pulmonary edema secondary to severe malignant hypertension and critically accelerated acute kidney injury, with evidence of systemic microangiopathic hemolytic anemia in the setting of clinical suspicion of systemic sclerosis sine scleroderma. Renin-angiotensin system blockade (angiotensin-converting enzyme inhibitor) was immediately started at the maximum possible dose in the setting of scleroderma renal crisis. Despite better control of blood pressure and volume status, kidney function continued to rapidly decline, thus a decision was made to go ahead with a kidney biopsy on day 3 of admission, which revealed severe features of scleroderma renal crisis with active thrombotic microangiopathy. The multidisciplinary team elected to treat the patient with terminal complement blockade using eculizumab in addition to high dose lisinopril and blood pressure control. Her serum creatinine peaked at 9.3 mg/dL shortly after eculizumab initiation, but improved soon after, dropping to 2.8 mg/dL after completion of the final eculizumab dose and 1.8 mg/dL 3 years later.

4.
Kidney Med ; 5(10): 100707, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37771916

ABSTRACT

Rationale & Objective: Limited data exist on patient perspectives of the implications of kidney biopsies. We explored patients' perspectives alongside those of clinicians to better understand how kidney biopsies affect patients' viewpoints and the clinical utility of biopsies. Study Design: Prospective Cohort Study. Setting & Participants: Patient participants and clinicians in the Kidney Precision Medicine Project, a prospective cohort study of patients who undergo a research protocol biopsy, at 9 recruitment sites across the United States. Surveys were completed at enrollment before biopsy and additional timepoints after biopsy (participants: 28 days, 6 months; clinicians: 2 weeks). Analytical Approach: Kappa statistics assessed prebiopsy etiology concordance between clinicians and participants. Participant perspectives after biopsy were analyzed using a thematic approach. Clinician ratings of clinical management value were compared to prebiopsy ratings with Wilcoxon matched-pairs signed-rank tests and paired t tests. Results: A total of 167 participants undergoing biopsy (124 participants with chronic kidney disease [CKD], 43 participants with acute kidney injury [AKI]) and 58 clinicians were included in this study. CKD participants and clinicians had low etiology concordance for the 2 leading causes of CKD: diabetes (k = 0.358) and hypertension (k = 0.081). At 28 days postbiopsy, 46 (84%) participants reported that the biopsy affected their understanding of their diagnosis, and 21 (38%) participants reported that the results of the biopsy affected their medications. Participants also shared biopsy impressions in free-text responses, including impacts on lifestyle and concurrent condition management. The biopsy positively shifted clinician perceptions of the procedure's clinical management benefits, while perceptions of prognostic value decreased and diagnostic ratings remained unchanged. Limitations: Our study did not have demographic data of clinicians and could not provide insight into postbiopsy experiences for participants who did not respond to follow-up surveys. Conclusions: Participant perspectives of the personal implications of kidney biopsy can be integrated into shared decision-making between clinicians and patients. Enhanced biopsy reports and interactions between nephrologists and pathologists could augment the management and prognostic value of kidney biopsies. Plain-Language Summary: The utility of kidney biopsy is debated among clinicians, and patients' perspectives are even less explored. To address these gaps, we synthesized perspectives from clinicians and patient participants of the Kidney Precision Medicine Project (KPMP). Both before and after biopsy, clinicians were surveyed on how the procedure affected their clinical management, diagnosis, and prognosis. After biopsy, participants shared how the procedure affected their diagnosis, medication, and lifestyle changes. Clinicians and patients shared an appreciation for the biopsy's impact on medical management but diverged in their takeaways on diagnosis and prognosis. These findings highlight the need for greater collaboration between patients and clinicians, particularly as they navigate shared decision-making when considering kidney biopsy.

5.
Article in English | MEDLINE | ID: mdl-37533147

ABSTRACT

The Kidney Precision Medicine Project (KPMP) aims to create a kidney tissue atlas, define disease subgroups, and identify critical cells, pathways, and targets for novel therapies through molecular investigation of human kidney biopsies obtained from participants with acute kidney injury (AKI) or chronic kidney disease (CKD). We present the case of a 66-year-old woman with diabetic kidney disease who underwent a protocol KPMP kidney biopsy. Her clinical history included diabetes mellitus complicated by neuropathy and eye disease, increased insulin resistance, hypertension, albuminuria, and relatively preserved glomerular filtration rate (early CKD stage 3a). The patient's histopathology was consistent with diabetic nephropathy and arterial and arteriolar sclerosis. Three-dimensional, immunofluorescence imaging of the kidney biopsy specimen revealed extensive peri-glomerular neovascularization that was underestimated by standard histopathologic approaches. Spatial transcriptomics was performed to obtain gene expression signatures at discrete areas of the kidney biopsy. Gene expression in the areas of glomerular neovascularization revealed increased expression of genes involved in angiogenic signaling, proliferation and survival of endothelial cells, as well as new vessel maturation and stability. This molecular correlation provides additional insights into the development of kidney disease in patients with diabetes and spotlights how novel molecular techniques employed by the KPMP can supplement and enrich the histopathologic diagnosis obtained from a kidney biopsy.

6.
medRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37398386

ABSTRACT

Arteriolar hyalinosis in kidneys is an independent predictor of cardiovascular disease, the main cause of mortality in chronic kidney disease (CKD). The underlying molecular mechanisms of protein accumulation in the subendothelial space are not well understood. Using single cell transcriptomic data and whole slide images from kidney biopsies of patients with CKD and acute kidney injury in the Kidney Precision Medicine Project, the molecular signals associated with arteriolar hyalinosis were evaluated. Co-expression network analysis of the endothelial genes yielded three gene set modules as significantly associated with arteriolar hyalinosis. Pathway analysis of these modules showed enrichment of transforming growth factor beta / bone morphogenetic protein (TGFß / BMP) and vascular endothelial growth factor (VEGF) signaling pathways in the endothelial cell signatures. Ligand-receptor analysis identified multiple integrins and cell adhesion receptors as over-expressed in arteriolar hyalinosis, suggesting a potential role of integrin-mediated TGFß signaling. Further analysis of arteriolar hyalinosis associated endothelial module genes identified focal segmental glomerular sclerosis as an enriched term. On validation in gene expression profiles from the Nephrotic Syndrome Study Network cohort, one of the three modules was significantly associated with the composite endpoint (> 40% reduction in estimated glomerular filtration rate (eGFR) or kidney failure) independent of age, sex, race, and baseline eGFR, suggesting poor prognosis with elevated expression of genes in this module. Thus, integration of structural and single cell molecular features yielded biologically relevant gene sets, signaling pathways and ligand-receptor interactions, underlying arteriolar hyalinosis and putative targets for therapeutic intervention.

7.
Am J Epidemiol ; 191(7): 1153-1173, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35279711

ABSTRACT

The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cohort Studies , Humans , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2 , United States/epidemiology , Young Adult
8.
J Am Soc Nephrol ; 33(1): 238-252, 2022 01.
Article in English | MEDLINE | ID: mdl-34732507

ABSTRACT

BACKGROUND: Failure of the glomerular filtration barrier, primarily by loss of slit diaphragm architecture, underlies nephrotic syndrome in minimal change disease. The etiology remains unknown. The efficacy of B cell-targeted therapies in some patients, together with the known proteinuric effect of anti-nephrin antibodies in rodent models, prompted us to hypothesize that nephrin autoantibodies may be present in patients with minimal change disease. METHODS: We evaluated sera from patients with minimal change disease, enrolled in the Nephrotic Syndrome Study Network (NEPTUNE) cohort and from our own institutions, for circulating nephrin autoantibodies by indirect ELISA and by immunoprecipitation of full-length nephrin from human glomerular extract or a recombinant purified extracellular domain of human nephrin. We also evaluated renal biopsies from our institutions for podocyte-associated punctate IgG colocalizing with nephrin by immunofluorescence. RESULTS: In two independent patient cohorts, we identified circulating nephrin autoantibodies during active disease that were significantly reduced or absent during treatment response in a subset of patients with minimal change disease. We correlated the presence of these autoantibodies with podocyte-associated punctate IgG in renal biopsies from our institutions. We also identified a patient with steroid-dependent childhood minimal change disease that progressed to end stage kidney disease; she developed a massive post-transplant recurrence of proteinuria that was associated with high pretransplant circulating nephrin autoantibodies. CONCLUSIONS: Our discovery of nephrin autoantibodies in a subset of adults and children with minimal change disease aligns with published animal studies and provides further support for an autoimmune etiology. We propose a new molecular classification of nephrin autoantibody minimal change disease to serve as a framework for instigation of precision therapeutics for these patients.


Subject(s)
Autoantibodies/blood , Membrane Proteins/immunology , Nephrosis, Lipoid/blood , Nephrosis, Lipoid/etiology , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Nephrosis, Lipoid/pathology , Podocytes/pathology
9.
Kidney Int Rep ; 6(6): 1629-1633, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34169203

ABSTRACT

INTRODUCTION: Focal segmental glomerulosclerosis (FSGS) is characterized by proteinuria and a histologic pattern of glomerular lesions of diverse etiology that share features including glomerular scarring and podocyte foot process effacement. Roundabout guidance receptor 2 (ROBO2)/slit guidance ligand 2 (SLIT2) signaling destabilizes the slit diaphragm and reduces podocyte adhesion to the glomerular basement membrane (GBM). Preclinical studies suggest that inhibition of glomerular ROBO2/SLIT2 signaling can stabilize podocyte adhesion and reduce proteinuria. This clinical trial evaluates the preliminary efficacy and safety of ROBO2/SLIT2 inhibition with the ROBO2 fusion protein PF-06730512 in patients with FSGS. METHODS: The Study to Evaluate PF-06730512 in Adults With FSGS (PODO; ClinicalTrials.gov identifier NCT03448692), an open-label, phase 2a, multicenter trial in adults with FSGS, will enroll patients into 2 cohorts (n = 22 per cohort) to receive either high- or low-dose PF-06730512 (intravenous) every 2 weeks for 12 weeks. Key inclusion criteria include a confirmed biopsy diagnosis of FSGS, an estimated glomerular filtration rate (eGFR) ≥45 ml/min/1.73 m2 based on the Chronic Kidney Disease Epidemiology Collaboration formula (30-45 with a recent biopsy), and urinary protein-to-creatinine ratio (UPCR) >1.5 g/g. Key exclusion criteria include collapsing FSGS, serious/active infection, ≥50% tubulointerstitial fibrosis on biopsy, and organ transplantation. The primary endpoint is change from baseline to week 13 in UPCR; secondary endpoints include safety, changes in eGFR, and PF-06730512 serum concentration. RESULTS: This ongoing trial will report the efficacy, safety, pharmacokinetics, and biomarker results of PF-06730512 for patients with FSGS. CONCLUSION: Findings from this proof-of-concept study may support further development and evaluation of PF-06730512 to treat FSGS and warrant assessment in phase 3 clinical trials.

10.
Cell Metab ; 33(5): 1042-1061.e7, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951465

ABSTRACT

Tubulointerstitial abnormalities are predictive of the progression of diabetic kidney disease (DKD), and their targeting may be an effective means for prevention. Proximal tubular (PT) expression of kidney injury molecule (KIM)-1, as well as blood and urinary levels, are increased early in human diabetes and can predict the rate of disease progression. Here, we report that KIM-1 mediates PT uptake of palmitic acid (PA)-bound albumin, leading to enhanced tubule injury with DNA damage, PT cell-cycle arrest, interstitial inflammation and fibrosis, and secondary glomerulosclerosis. Such injury can be ameliorated by genetic ablation of the KIM-1 mucin domain in a high-fat-fed streptozotocin mouse model of DKD. We also identified TW-37 as a small molecule inhibitor of KIM-1-mediated PA-albumin uptake and showed in vivo in a kidney injury model in mice that it ameliorates renal inflammation and fibrosis. Together, our findings support KIM-1 as a new therapeutic target for DKD.


Subject(s)
Diabetic Nephropathies/pathology , Fatty Acids/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Animals , Benzamides/pharmacology , Cell Cycle Checkpoints/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Endocytosis , Fibrosis , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacology , Sulfones/pharmacology
11.
Kidney Int ; 100(2): 289-300, 2021 08.
Article in English | MEDLINE | ID: mdl-33857571

ABSTRACT

Primary membranous nephropathy is a leading cause of adult nephrotic syndrome. The field took a major step forward with the identification of phospholipase A2 receptor (PLA2R) as a target antigen in the majority of cases and with the ability to measure circulating autoantibodies to PLA2R. Since then, the existence of additional target antigens such as thrombospondin type-1 domain-containing 7A, exostosin 1 and 2, neural EGFL like 1, and semaphorin 3B has been demonstrated. The ability to detect and monitor levels of circulating autoantibodies has opened a new window onto the humoral aspect of primary membranous nephropathy. Clinicians now rely on clinical parameters such as proteinuria, as well as levels of circulating autoantibodies against PLA2R and the results of immunofluorescence staining for PLA2R within kidney biopsy tissue, to guide the management of this disease. The relationship between immunologic and clinical disease course is consistent, but not necessarily intuitive. In addition, kidney biopsy provides only a single snapshot of disease that needs to be interpreted in light of changing clinical and serological findings. A clear understanding of these dynamic parameters is essential for staging, treatment, and management of this disease. This review aims to shed light on current knowledge regarding the development and time course of changes in the serum levels of autoantibodies against PLA2R, proteinuria, and histological findings that underlie the pathophysiology of primary membranous nephropathy.


Subject(s)
Glomerulonephritis, Membranous , Adult , Autoantibodies , Disease Progression , Glomerulonephritis, Membranous/diagnosis , Humans , Proteinuria , Receptors, Phospholipase A2
12.
medRxiv ; 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33758891

ABSTRACT

The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults at risk for coronavirus disease 2019 (COVID-19) comprising 14 established United States (US) prospective cohort studies. For decades, C4R cohorts have collected extensive data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R will link this pre-COVID phenotyping to information on SARS-CoV-2 infection and acute and post-acute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and broadly reflects the racial, ethnic, socioeconomic, and geographic diversity of the US. C4R is ascertaining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations, and high-quality events surveillance. Extensive pre-pandemic data minimize referral, survival, and recall bias. Data are being harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these will be pooled and shared widely to expedite collaboration and scientific findings. This unique resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including post-acute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term trajectories of health and aging.

13.
Am J Pathol ; 190(4): 799-816, 2020 04.
Article in English | MEDLINE | ID: mdl-32220420

ABSTRACT

Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.


Subject(s)
Kidney Diseases/prevention & control , Kidney Glomerulus/cytology , Podocytes/cytology , Protective Agents/metabolism , Receptors, Immunologic/deficiency , Adult , Animals , Female , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred C57BL , Podocytes/metabolism , Proteinuria/metabolism , Proteinuria/pathology , Proteinuria/prevention & control , Rats
14.
Clin Nephrol ; 93(4): 203-208, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31907143

ABSTRACT

Plasma cell dyscrasias, including multiple myeloma (MM), are associated with diverse forms of pathology in the kidney. Some pathologic lesions, including light chain (myeloma) cast nephropathy (LCCN), are relatively common, while others, such as light chain proximal tubulopathy (LCPT), are less so. Both LCCN and LCPT are associated with clinical manifestations of acute kidney injury. Rare instances of coincidental LCPT and LCCN have been reported, but none to our knowledge of coincidental crystalline forms of these diseases, with similar forms appearing in the urine. While LCPT is usually associated with intracytoplasmic deposition of crystallized light chains, the intraluminal light chain casts in LCCN are typically amorphous and do not form crystals. We report here the co-occurrence of these two monoclonal crystalline forms of acute kidney injury in a 66-year-old woman with known history of κ-restricted multiple myeloma. Additionally, forms suggestive of a crystalline morphology were observed in the urine sediment. Clinicians who observe similar crystalline structures on renal biopsy or in urine sediment should have a high index of suspicion for underlying multiple myeloma as a unifying diagnosis.


Subject(s)
Acute Kidney Injury/complications , Immunoglobulin Light Chains/analysis , Kidney Tubules, Proximal/pathology , Multiple Myeloma/pathology , Aged , Crystallization , Female , Humans , Kidney Diseases/pathology , Multiple Myeloma/urine , Urine/cytology
15.
Front Cell Dev Biol ; 8: 618898, 2020.
Article in English | MEDLINE | ID: mdl-33604334

ABSTRACT

Cytoskeletal structure and its regulation are essential for maintenance of the differentiated state of specific types of cells and their adaptation to physiologic and pathophysiologic conditions. Renal glomerular capillaries, composed of podocytes, endothelial cells, and the glomerular basement membrane, have distinct structural and biophysical properties and are the site of injury in many glomerular diseases. Calcineurin inhibitors, immunosuppressant drugs used for organ transplantation and auto-immune diseases, can protect podocytes and glomerular capillaries from injury by preserving podocyte cytoskeletal structure. These drugs cause complications including hypertension and hyperkalemia which are mediated by WNK (With No Lysine) kinases as well as vasculopathy with glomerulopathy. WNK kinases and their target kinases oxidative stress-responsive kinase 1 (OSR1) and SPS1-related proline/alanine-rich kinase (SPAK) have fundamental roles in angiogenesis and are activated by calcineurin inhibitors, but the actions of these agents on kidney vasculature, and glomerular capillaries are not fully understood. We investigated WNK1 expression in cultured podocytes and isolated mouse glomerular capillaries to determine if WNK1 contributes to calcineurin inhibitor-induced preservation of podocyte and glomerular structure. WNK1 and OSR1/SPAK are expressed in podocytes, and in a pattern similar to podocyte synaptopodin in glomerular capillaries. Calcineurin inhibitors increased active OSR1/SPAK in glomerular capillaries, the Young's modulus (E) of glomeruli, and the F/G actin ratio, effects all blocked by WNK inhibition. In glomeruli, WNK inhibition caused reduced and irregular synaptopodin-staining, abnormal capillary and foot process structures, and increased deformability. In cultured podocytes, FK506 activated OSR1/SPAK, increased lamellipodia, accelerated cell migration, and promoted traction force. These actions of FK506 were reduced by depletion of WNK1. Collectively, these results demonstrate the importance of WNK1 in regulation of the podocyte actin cytoskeleton, biophysical properties of glomerular capillaries, and slit diaphragm structure, all of which are essential to normal kidney function.

16.
Kidney Int Rep ; 4(7): 955-962, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31317118

ABSTRACT

INTRODUCTION: The number of glomeruli and glomerulosclerosis evaluated on kidney biopsy slides constitute standard components of a renal pathology report. Prevailing methods for glomerular assessment remain manual, labor intensive, and nonstandardized. We developed a deep learning framework to accurately identify and segment glomeruli from digitized images of human kidney biopsies. METHODS: Trichrome-stained images (n = 275) from renal biopsies of 171 patients with chronic kidney disease treated at the Boston Medical Center from 2009 to 2012 were analyzed. A sliding window operation was defined to crop each original image to smaller images. Each cropped image was then evaluated by at least 3 experts into 3 categories: (i) no glomerulus, (ii) normal or partially sclerosed (NPS) glomerulus, and (iii) globally sclerosed (GS) glomerulus. This led to identification of 751 unique images representing nonglomerular regions, 611 images with NPS glomeruli, and 134 images with GS glomeruli. A convolutional neural network (CNN) was trained with cropped images as inputs and corresponding labels as output. Using this model, an image processing routine was developed to scan the test images to segment the GS glomeruli. RESULTS: The CNN model was able to accurately discriminate nonglomerular images from NPS and GS images (performance on test data: Accuracy: 92.67% ± 2.02% and Kappa: 0.8681 ± 0.0392). The segmentation model that was based on the CNN multilabel classifier accurately marked the GS glomeruli on the test data (Matthews correlation coefficient = 0.628). CONCLUSION: This work demonstrates the power of deep learning for assessing complex histologic structures from digitized human kidney biopsies.

17.
Kidney Int Rep ; 3(2): 464-475, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29725651

ABSTRACT

INTRODUCTION: Chronic kidney damage is routinely assessed semiquantitatively by scoring the amount of fibrosis and tubular atrophy in a renal biopsy sample. Although image digitization and morphometric techniques can better quantify the extent of histologic damage, we need more widely applicable ways to stratify kidney disease severity. METHODS: We leveraged a deep learning architecture to better associate patient-specific histologic images with clinical phenotypes (training classes) including chronic kidney disease (CKD) stage, serum creatinine, and nephrotic-range proteinuria at the time of biopsy, and 1-, 3-, and 5-year renal survival. Trichrome-stained images processed from renal biopsy samples were collected on 171 patients treated at the Boston Medical Center from 2009 to 2012. Six convolutional neural network (CNN) models were trained using these images as inputs and the training classes as outputs, respectively. For comparison, we also trained separate classifiers using the pathologist-estimated fibrosis score (PEFS) as input and the training classes as outputs, respectively. RESULTS: CNN models outperformed PEFS across the classification tasks. Specifically, the CNN model predicted the CKD stage more accurately than the PEFS model (κ = 0.519 vs. 0.051). For creatinine models, the area under curve (AUC) was 0.912 (CNN) versus 0.840 (PEFS). For proteinuria models, AUC was 0.867 (CNN) versus 0.702 (PEFS). AUC values for the CNN models for 1-, 3-, and 5-year renal survival were 0.878, 0.875, and 0.904, respectively, whereas the AUC values for PEFS model were 0.811, 0.800, and 0.786, respectively. CONCLUSION: The study demonstrates a proof of principle that deep learning can be applied to routine renal biopsy images.

18.
J Am Soc Nephrol ; 29(5): 1501-1512, 2018 05.
Article in English | MEDLINE | ID: mdl-29572404

ABSTRACT

Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear.Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury.Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes.Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time.


Subject(s)
Biophysical Phenomena , Cytoskeleton/physiology , Glomerulonephritis/physiopathology , Nephrosis, Lipoid/physiopathology , Podocytes/physiology , Animals , Cell Adhesion , Collagen/metabolism , Disease Models, Animal , Disease Progression , Elastic Modulus , Glomerulonephritis/genetics , Glomerulonephritis/pathology , HIV/genetics , Kidney Glomerulus/pathology , Kidney Glomerulus/physiopathology , Mice , Mice, Transgenic , Microscopy, Atomic Force , Microscopy, Fluorescence , Nephrosis, Lipoid/chemically induced , Nephrosis, Lipoid/pathology , Paxillin/metabolism , Podocytes/pathology , Protamines , Real-Time Polymerase Chain Reaction
19.
Sci Transl Med ; 9(417)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29167396

ABSTRACT

Chronic kidney disease (CKD/uremia) remains vexing because it increases the risk of atherothrombosis and is also associated with bleeding complications on standard antithrombotic/antiplatelet therapies. Although the associations of indolic uremic solutes and vascular wall proteins [such as tissue factor (TF) and aryl hydrocarbon receptor (AHR)] are being defined, the specific mechanisms that drive the thrombotic and bleeding risks are not fully understood. We now present an indolic solute-specific animal model, which focuses on solute-protein interactions and shows that indolic solutes mediate the hyperthrombotic phenotype across all CKD stages in an AHR- and TF-dependent manner. We further demonstrate that AHR regulates TF through STIP1 homology and U-box-containing protein 1 (STUB1). As a ubiquitin ligase, STUB1 dynamically interacts with and degrades TF through ubiquitination in the uremic milieu. TF regulation by STUB1 is supported in humans by an inverse relationship of STUB1 and TF expression and reduced STUB1-TF interaction in uremic vessels. Genetic or pharmacological manipulation of STUB1 in vascular smooth muscle cells inhibited thrombosis in flow loops. STUB1 perturbations reverted the uremic hyperthrombotic phenotype without prolonging the bleeding time, in contrast to heparin, the standard-of-care antithrombotic in CKD patients. Our work refines the thrombosis axis (STUB1 is a mediator of indolic solute-AHR-TF axis) and expands the understanding of the interconnected relationships driving the fragile thrombotic state in CKD. It also establishes a means of minimizing the uremic hyperthrombotic phenotype without altering the hemostatic balance, a long-sought-after combination in CKD patients.


Subject(s)
Hemorrhage/metabolism , Thrombosis/metabolism , Ubiquitin-Protein Ligases/metabolism , Uremia/metabolism , Analysis of Variance , Animals , Female , Hemorrhage/enzymology , Hemorrhage/pathology , Male , Mice , Renal Insufficiency, Chronic/enzymology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Thrombosis/enzymology , Thrombosis/pathology , Ubiquitin-Protein Ligases/genetics , Uremia/enzymology , Uremia/pathology
20.
JCI Insight ; 1(19): e86934, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27882344

ABSTRACT

The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.


Subject(s)
GTPase-Activating Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Podocytes/cytology , Receptors, Immunologic/metabolism , Signal Transduction , Animals , Cell Movement , Kidney , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...